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Figure 1: Stimuli from our three studies showing proportion representations related to goals for calories burned, step count, and
active minutes as bar charts, radial bar charts, and text (Study 1 only). Left: Stimuli from Study 1 with a digital time representation.
Middle: Stimuli from Study 2 with an additional analog time representation. Right: Stimuli from Study 3 with a different color-coding.

ABSTRACT

We present three studies that investigate the effectiveness of multiple
glanceable part-to-whole proportion representations on smartwatch
faces. Our goal was to understand how quickly and accurately
people can make judgments about their progress toward multiple
goals displayed in a small space. We designed our three studies with
increasing external validity. The first study compared bar charts,
radial bar charts, and text representations—shown with a digital time
display. The second study added an analog time dial as a distractor
to increase the complexity of the watch face. To emulate realistic
viewing conditions, the third study investigated the effect of viewing
angles. In Study 1 bar and radial bar charts outperformed text
representations, in Study 2 adding an analog time dial as a distractor
did not affect task performance, and in Study 3 only the most extreme
angle led to some performance decrease. Supplementary material is
available at https://osf.io/ad2z7/.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Smartwatch technology has evolved drastically: smartwatches now
are smart displays that collect and retrieve data and show this
data in the form of watch face dashboards. Typically, smartwatch
faces contain a representation of time as well as multiple watch
complications—a term from horology that describes graphical fea-
tures on watches that represent information other than time [51].
Complications expose a wide range of data, including step count,
active minutes, or weather information. Watch complications are
often only around 1 cm×1 cm large. Typical complications contain
short texts (e. g., date, temperature), icons (e. g., email, weather con-
dition), simple visualizations (e. g., bar charts, pie charts, radial bar
charts, line charts), or combinations of these [31].

Smartwatches have a unique usage context for visualization: they
are often used “on the go,” with average usage times of 6.7 sec-
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onds [43]. Such a short time allows for quick peeks or glances,
for example, to check the time. However, it is unclear how much
additional information can be seen “at a glance” and which represen-
tation type can communicate information most effectively. Previous
work [10] suggests that different representation types can be read
at different speeds but did not study the watch face context with its
typical representation types, smaller visualization sizes, and multi-
ple co-located representations. Therefore, we set out to investigate
how quickly multiple visualizations can be read on watch faces to
establish time thresholds for different representation types.

We focused our work around one of the main tasks people perform
with smartwatches: monitoring their progress towards their self-set
goals (e. g., 10,000 steps a day) [1]. This monitoring requires seeing
the proportion of a current value concerning this goal, either as a
percentage Text70% or as a visualization .

We conducted three perceptual studies to assess how quickly and
accurately people can read common proportion representations on
smartwatch faces. In each study, we increased external validity, to
gain an in-depth and more practical understanding of how people
read proportions at a glance (Fig. 1). We found that both Bar
and Radial representations were faster and less error-prone than
a Text70%. Bar was slightly better than Radial both with
a digital and digital+analog time display. Overall, adding an analog
time display had only a negligible effect on task performance. From
the last study, we have first results that the watch viewing angle
might affect performance when reading Radial charts.

In summary, this work contributes to understanding a nascent
research topic—small-scale visualizations for smartwatches. Drawn
from the in-depth reflections on the results, our work also discusses
practical design implications and directions for future research.

2 RELATED WORK

Proportion representations are common on smartwatches, especially
for the support of part-to-whole judgments, such as a comparison of
progress towards a goal (for questions such as “how much of my step
count goal have I achieved today?”). Part-to-part judgments are less
commonly supported on smartwatches; we rarely see visualizations
that compare, for example, how much time people spent walking,
sitting, or sleeping. Therefore, we focus on part-to-whole representa-
tions, and especially rectilinear and circular constructions, which we
found to be most common (see Sect. 3.2). Here, we review related
work focusing on the differences between the two representations. In
addition, we discuss the real-world use of smartwatches, and review
studies that have investigated visualizations on smartwatches.
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2.1 Visualization of Proportions
In psychology, researchers investigated proportion judgments for
two subdivisions (a part and a whole), similar to our goal: Simkin
and Hastie [45] found pie charts to be as accurate as stacked bars,
whereas other researchers [18, 21, 30] found pie charts to be more
accurate than stacked bars. Even though two studies [30, 45] found
that completion time was faster for stacked bars in comparison to
pie charts, Eells’ [21] participants answered more questions with pie
charts than with bar charts in five minutes. As such, this evidence
does not allow us to predict performance on smartwatches.

Part-to-whole judgments have also been extensively studied in
visualization [34–38,46,53]. All of these studies included pie charts
and their variations and some studies [36, 38] in addition compared
pie charts to other charts. Kosara and Ziemkiewicz [38] compared
pie charts, donut charts, stacked bar charts, and square pie charts.
Participants achieved the highest accuracy with the square pie charts
and the lowest accuracy with the stacked bar charts. Donut and
pie charts were not significantly different from each another. Later,
Skau and Kosara [46] investigated the effect of changing the inner
radii (0, 20, 40, 60, 80, and 97%) of a donut chart on performance,
however, only the thin donut chart with an inner radius of 97%
was slightly less accurate than the rest, a result confirmed by Cai
et al. [12]. Kosara [36] also compared five different part-to-whole
representations composed of five parts each, asking participants to
estimate the percentage of the largest or median part. The stacked
bar chart was slightly faster and had similar accuracy.

The related work done so far showed that pie charts are more or
equally accurate as stacked bar charts whereas stacked bar charts
tend to have faster completion times. Our work adds to this line
of research by investigating two novel contexts: a) judgments of
small-scale proportion visualizations on smartwatches—previous
work [18, 21, 36, 45] rendered pie charts at sizes of 45 mm–160 mm
in diameter and the stacked bar charts between 50 mm–200 mm in
length. Our radial bar chart has a diameter of 8 mm and the stacked
bar chart is 8 mm long; and b) judgment tasks that require reading
multiple co-located proportion visualizations at the same time.

2.2 Real-world Use of Smartwatches
Smartwatches have unique usage contexts for visualization research.
Studies have shown that peoplelook at a smartwatch on average for
only 5–7 sec [24, 25, 41, 43, 50]. Such short peeks or glances allow
reading the time (avg. 1.9 sec [43]) but it is unclear how much other
data can be taken in at a glance from a watch face.

To understand what people want to learn from their personal data,
Choe et al. [16] analyzed 30 videos during which quantified selfers
presented the insights gained from their data. The researchers found
that quantified selfers engaged in many insight-generating data anal-
ysis tasks (such as looking at trends, correlations, or distributions)
to self-reflect. Amini et al. [1] conducted interviews with 10 partic-
ipants to elicit needs for the exploration of health and fitness data,
especially while people are moving. The most common insights
were related to reading single or multiple values, estimating the
progress towards a goal, comparing one or multiple measures with
other people’s, and being motivated. This work supports our moti-
vation to focus on the comparison of multiple proportions. Based
on their findings, Amini et al. also asked nine graphics designers
to sketch representations for each insight type. Especially for the
goal-based insight category, most sketches used visualizations in-
stead of text. The visualizations were either donut and pie charts
or space-filling shapes such as a single bar or icon, similar to the
representations we use in our experiment.

2.3 Studies of Visualizations on Smartwatches
Only recently have researchers started to conduct dedicated research
on visualizations for smartwatches. Some of this research targets
novel types of representations such as Chen’s [14] time-series, Suciu

and Larsen’s [49] time spiral, or Neshati et al.’s [42] compressed line
charts. Other types of research investigated existing visualizations
on smartwatches: Aravind et al. [2], for example, asked which types
of visualizations people prefer for sleep data. Islam et al. [31] studied
which type and how much information people displayed on their
watch face. This study result is part of our motivation to test tasks
that involve multiple co-located visualizations.

A third category of work concerns perception studies such as ours.
Heer et al. [28] provide a first indication that studying visualizations
under different sizes and viewing conditions are important, because
of the unexpectedly poor performance of filled line charts at small
vertical heights. Healey et al. [27] conducted more basic perceptual
experiments with size encodings and saw fewer errors and shorter
response times for larger-sized stimuli. Cai et al. [12] tested donut
charts of different sizes, approximately 3–9× larger than ours, and
found no evidence of an effect of size on the accuracy or speed of
proportion estimation tasks. Most closely related to our work is a
prior study by Blascheck et al. [10] that used a similar study method-
ology on a smartwatch. The authors investigated three different
charts (bar, donut, and radial) with an increasing number of data
points shown full-screen on a smartwatch. The researchers’ goal was
to find minimal perception time thresholds for a simple data com-
parison task: finding the larger of two marked elements. Compared
to that previous work, our present paper studies a completely differ-
ent task: the perception of percentages presented simultaneously in
three co-located visualizations (Fig. 1). Furthermore, we consider
more realistic watch faces, providing insights on how to improve the
design of visualizations for them. The previous work [10] used only
one visualization, filling the entire smartwatch screen.

While these perception studies are valuable first steps to under-
standing the effects of small-scale visualization in a mobile context,
they do not allow us to predict the performance of the task and setup
we test in the following previous tasks.

2.4 Summary
Previous work inspired our endeavor to continue comparing rectilin-
ear and circular constructions, which have been extensively studied
but are common representation types on smartwatches. Because
smartwatch faces have a unique style using both digital and analog
time representations as well as displaying multiple data types, we
took this as inspiration and compared how this affects glanceability.

3 EVALUATING PROPORTION VIS FOR WATCH FACES

In this section, we discuss our overall research questions, a pre-study
we conducted to ground our decisions for the follow-up studies,
and the study design shared by these three studies. Documents,
data, code for the statistical analysis, detailed results, and stimuli are
available in the supplemental material (https://osf.io/ad2z7/).

3.1 Research Questions
When on the go people often monitor their progress and check
whether they have reached their self-set goal (e. g., 10,000 steps a
day) [1]. We wanted to investigate if people can check progress to-
wards different goals at a glance on a watch face when presented with
multiple proportion representations simultaneously. Specifically, our
research questions (RQ) are: (RQ1) What are common watch face
representations to represent proportions (Sect. 3.2)? (RQ2) Which
part-to-whole proportion representation has the lowest time thresh-
old and highest accuracy for multiple smartwatch complications
(Sect. 4–6)? (RQ3) How does the density and complexity of a watch
face affect task performance (Sect. 4–6)? (RQ4) How does the
viewing angle of a smartwatch affect task performance (Sect. 6)?

3.2 Pre-Study: Common Proportion Representations
To choose which proportion representations to evaluate, we first
systematically captured their variations on smartwatches from the
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“most popular” watch faces listed on the Facer Android website [40].
Facer is a popular watch face creation and delivery app, website, and
community that features thousands of watch faces in 22 categories.
We downloaded the top 100 watch faces for four weeks: out of 400
watch faces, 184 were unique. One author conducted the first coding
on the representation type of time, the number of complications,
the data types shown, and the data types depicted as a proportion
representation. Another author later checked the coding.

From the 184 unique watch faces coded, 48.4% use a digital dis-
play of time, 28.2% an analog display, and 23.4% a combination of
both (hybrid). The median number of complications shown on the
watch face was 4 (min: 0, max: 16). We found 24 different types
of data represented next to time and date. Of these, we considered
seven (29.1%) as representing a proportion (calories, distance, heart
rate, humidity, phone & watch battery, and steps). We further dis-
tinguished between real and derived proportions. Real proportions
are humidity, phone, and watch battery. Derived proportions are
derived from a personally set maximum, for example, 10,000 steps
or a maximum heart rate of 220 bpm. The derived proportions are
calories, distance, heart rate, and steps.

Next, we looked at the 153 watch faces that had at least one
data type using a proportion representation. On average 1 (max: 4)
proportion data type was represented on these watch faces. Further
exploring those watch faces that showed more than one data type
as a proportion (34.0%), we found that common data types shown
together were: watch battery and steps (14.3%); watch battery, steps,
and heart rate (5.2%); watch battery and phone battery (5.2%);
watch battery, steps, and phone battery (4.5%); watch battery, steps,
phone battery, and distance (1.3%); watch battery, steps, and calo-
ries (0.7%); watch battery and humidity (0.7%); watch battery, phone
battery, and heart rate (0.7%); steps and humidity (0.7%); watch
battery, steps, and humidity (0.7%).

We then identified two data dimensions to describe the proportion
representations we had captured: the category (e. g., step count,
battery level) and the proportion value (e. g., 7,283 steps, 37%) of
the data. For these representations, we derived a simple design space
of proportion representations. Building on Spence and Krizel’s [47]
distinction of integrated versus separated proportion representations,
we used Bertin’s [5] principal types of construction for diagrams
with two data dimensions to distinguish categories.

Bertin distinguishes six types of construction, four of which lead
to Spence and Krizel’s separated proportion representations: orthog-
onal construction (e. g., ), rectilinear elevation (e. g., ), polar
construction (e. g., ), and circular elevation (e. g., ). In all
these forms of construction, the whole is not explicitly represented.
While it is possible to draw a whole next to the parts (e. g., one large
bar that represents the whole next to all bars representing parts) this
type of construction is unusual and would require careful design to
be understandable to the broad population targeted with smartwatch
displays. Therefore, separated displays are not designed to show
proportions easily and we did not consider them further.

This exclusion left us with Bertin’s final two types of construc-
tion that show integrated constructions. In integrated constructions,
proportions form a whole and both the whole and the parts are im-
mediately accessible to the viewer. The proportion representations
in our survey show the data either as a continuous representa-
tion (75.3%) or as a discrete representation (24.7%).
Rectilinear construction. Proportions are juxtaposed along one lin-
ear dimension. This type of construction appeared often in our
survey, with the stacked bar chart being a common representa-
tive. We found that 25.3% of the proportion representations in our
survey showed a bar chart variation. Specific representations were
continuous bars (10.1%) , discrete bars (7.0%) , and bars
within icons (8.2%) .
Circular construction. Proportions can be represented as angles
or lengths on a circumference. This construction type was the most

Table 1: Counts for proportion representations by data type on the
coded watch faces, grouped by the type of construction—rectilinear
and circular. Color coding shows the amount normalized to the max
(26). Legend: bat. = battery, disc. = discrete.
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heart rate 1 2 1 5 1
steps 6 3 8 3 2 4 2 10 5

humidity 3
phone bat. 1 3 2 1 3 1
watch bat. 10 7 13 11 5 2 8 2 26 4

Sum 16 11 13 23 14 7 14 4 44 12

common in our survey (74.7%). We found gauges (27.9%) ,
arcs (23.5%) , donuts (13.2%) , sliding ranges (7.6%) ,
and pie charts (2.5%) . The arc and donut chart representa-
tions were both continuous (14.6% , 4.4% ) and discrete
(8.9% , 8.8% ).

Table 1 shows how often each type of construction appeared and
how it was represented. The bar chart was the only representation
that was sometimes integrated into an icon (for example, to show
the watch battery status). When multiple proportion representations
were shown together in 57.7% of the cases the same type of rep-
resentation was used; 7.7% of the watch faces used only text as
a representation; 34.6% of the watch faces used different types of
representations, for example, an arc chart and a gauge chart.

Based on our analysis, we chose to focus on one common recti-
linear and one common circular construction: a bar chart (in Table 1
used 40 times in total) and a radial bar (donut) chart (in Table 1 used
21 times in total). Despite its frequency, we did not pick an arc-type
representation because of its wide variety of designs and display
sizes in practice and instead focused on designs for which results
could more easily be applied on watch faces. Due to its frequency,
we used the same type of representation for all complications shown
together. In addition, we chose a continuous representation instead
of discrete steps for its higher frequency of use.

3.3 Watch Face Design

In the design of our studies, we had to make several choices regard-
ing how to draw the data presented on a watch face:
Visualization representations to compare. We chose a bar chart
and radial bar (donut) chart as outlined in Section 3.2.
Location of the representations. While there are no restrictions to
the design of watch faces, it is common for data to be displayed in
round complications close to the center of the watch. We chose to
use the top center position for the display of time in a digital format
in all three studies (Fig. 1), and reserved the border of the display for
an analog time distractor in Studies 2 and 3. We used the space in
the left-middle, bottom-center, and right-middle of the watch, which
are common locations for the display of complications.
Number of representations. Our work is motivated by realistic
watch faces, on which people commonly display 2–5 data items (in
addition to time) simultaneously [31]. Given the regions of the watch
face we had reserved for our data display, we chose to use three
representations as a middle ground to not overcrowd the display.



The time shown was randomly generated and used the European
format from 00 to 24 hours for the digital time display. We showed
the three Bar and Radial charts in a light green color in
Studies 1 and 2, and pink for Study 3 to increase contrast when the
watch was tilted. The background of the complication was dark
gray and the rest of the bar was shown in a lighter gray, ensuring
enough contrast. In addition to proportion representations, we also
showed an absolute number and a unit on the complication. We
chose three common categories: calories burned, step count, and
minutes of activity. We set the goal for each category ourselves
based on common guidelines for active minutes (45 min), calories
burned (2,100 kcal), and step count (12,000 steps). We generated the
bar with a width of 89 px and a height of 12 px, and the radial bar
with a width of 3.5 px and a radius of 45 px, which gave us roughly
the same amount of pixels for the radial bar as used for the bar chart.

3.4 Method
We used a 1 up / 3 down transformed and weighted staircase proce-
dure [26, 32], a common technique to investigate the perception of
visual stimuli in psychophysics. Stimuli consisted of three complica-
tions each showing a different data value: either one, two, or three of
the complications showed a value above 66% (> 2

3 ). Participants had
to determine how many complications showed more than 66%. Each
stimulus was shown for a pre-defined time (the stimulus exposure
duration). After each stimulus exposure, four intervening images, to
account for after images, were shown [26]. We counterbalanced the
order of representations using a reduced Latin square design. We
recruited participants to take part in only one of the three studies.
Measures. We determined the stimulus exposure duration using a
transformed and weighted up/down staircase method. We increased
the exposure duration by 100 ms (∆+) after one incorrect response
and decreased it by 200 ms (∆−) after three correct responses. To
reach the true threshold faster, we decreased the duration after each
correct answer by 200 ms before participants made their first mistake.
This procedure generally leads to a threshold with ~69% correct
responses [32, p.124]. We used two termination criteria: 25 reversals
or 180 stimuli. However, in all three studies, none of the participants
terminated after 180 stimuli, all terminated after 25 reversals.

We calculated the time threshold for each condition by averaging
the stimulus exposure time of the reversal points in the staircase:
trials in which participants oscillate between decrease-increase and
increase-decrease. For each condition, we averaged the mean time
of all reversal points after the second reversal. We also calculated
the mean error rate to inspect if we had reached the ~69% correct
responses [23]. For each condition, we computed the error rate as
the number of incorrect answers over all answers given.
Stimuli Generation. We generated random data so that each an-
swer (one, two, or three) was equally likely. The random data was
generated to ensure a minimum length and to make values above
66% easily detectable: values above 66% were between 71 and
100 px long on the watch and the values below 66% were between
33 and 63 px long. We counterbalanced the position of the target
complication(s) using the following seven different positions: for
correct answer = 1: , , ; correct answer = 2: ,

, ; correct answer = 3: . For each correct answer, we
prepared 60 different stimuli resulting in 180 stimuli in total.

3.5 Procedure and Apparatus
Participants first signed a consent form and filled out a background
questionnaire. They then read a printed description of the study,
the different conditions, and the procedure for one trial. For each
condition, participants first performed 10 training trials and contin-
ued with the condition until one of the two termination criteria was
reached. We set the starting time for each staircase to 1,000 ms. A
trial consisted of the stimulus being shown based on the set stimulus
exposure duration, then showing of four intervening images each

50°
36°
22°

0°

Figure 2: Left: The Sony Smartwatch 3 used in all three studies.
Middle: Our custom-made study stand. Right: The angles we used in
the study represented on a sketch of our study stand.

for 25 ms, then answer input by the participant, and then display
of the correctness of the answer. After each condition, we asked
participants if they had a certain strategy to perform the task. After
participants finished all conditions, we asked them to rank all rep-
resentations based on aesthetics, efficiency, and their confidence in
completing the task. We conducted the study in a lab with artificial
lighting and no direct sunlight to avoid different lighting conditions.

We used a Sony SmartWatch 3 (Fig. 2 Left) with Android Wear
2.8.0 as its operating system. The smartwatch has a screen resolution
of 320 px × 320 px (= a pixel size of 0.089 mm) and a viewable
screen area of 28.73 mm× 28.73 mm. As with previous studies [10,
11], we attached the smartwatch at an angle of 50° to a self-designed
adjustable stand (Fig. 2 Middle). We adjusted the stand for each
participant so that the smartwatch was at a height of 110 cm from the
floor and at a viewing distance of 28 cm from the seated participant.
We allowed participants to adjust their sitting position during the
study but did not re-adjust the position of the stand. We placed a
keyboard directly in front of participants, which they used to input
answers using the arrow keys: � (1 complication above 66%), � (2
complications above 66%), � (3 complications above 66%).

Our study software recorded all key presses in a log file, calcu-
lated the stimulus exposure duration for each trial, and communi-
cated with the smartwatch over TCP. If the termination criterion was
reached, it started the next condition. The smartwatch was connected
via a WiFi hotspot as a client and showed the stimuli and intervening
images, as well as simple instructions and feedback.

3.6 Data Analysis and Interpretation

In all three studies, we analyzed the time threshold, accuracy, and
participants’ rankings of techniques. We report sample means of
thresholds and 95% confidence intervals (CIs), which means we
are 95% confident that this interval includes the population mean.
We constructed all CIs using BCa bootstrapping (10,000 bootstrap
iterations). We also report the CIs of mean differences to compare
different conditions. The CIs of mean differences were adjusted for
multiple comparisons with Bonferroni correction [29]. We analyzed
the CIs using estimation techniques, which means that we interpret
them as providing different strengths of evidence about the popula-
tion mean, as recommended in the literature [6, 7, 17, 19, 20]. When
reading a CI of mean differences, a non-overlap of the CIs with 0
is evidence of a difference, corresponding to statistically significant
results in traditional p-value tests. Nevertheless, CIs allow for more
subtle interpretations: the farther from 0 and the tighter the CI is,
the stronger the evidence. Equivalent p-values can be obtained from
CI results following Krzywinski and Altman [39].

In addition, we report subjective rankings of visualizations by
participants. While these are not part of our main performance-
focused research questions, the rankings provide additional elements
that designers can consider when adding smartwatch complications.



Table 2: Details of participants for the three studies, all of whom participated in only one study. Number (#) of participants, gender (F: Female, M:
Male), age, and number of participants who reported to own a wrist-worn device (WW). Familiarity was rated on a 5-point Likert scale (1: not
familiar at all – 5: very familiar; MD: median, M: mean, SD: standard deviation). *One participant did not indicate their gender.

Study # Gender Age Occupant Degree WW Familiarity
F M (M / SD) Bar Radial

1 30 14 16 28.2/6.9 16 researchers, 5 engineers, 1 lecturer, 8 students PhD (7), Master (16), Bachelor (7) 5 MD = 5,
M = 4.8,
SD = 0.6

MD = 4,
M = 4.8,
SD = 0.6

2 30* 6 23 25.1/7.0 3 researchers, 1 engineer, 26 students Master (5), Bachelor (5), High School (20) 5 MD = 5,
M = 4.5,
SD = 0.8

MD = 4,
M = 3.7,
SD = 1.4

3 14 5 9 26.7/6.4 7 researchers, 5 students, 2 social workers Master (8), Bachelor (1), High School (5) 3 MD = 5,
M = 4.6,
SD = 0.6

MD = 4,
M = 4.1,
SD = 0.8

4 STUDY 1: DIGITAL WATCH FACE

Our first study investigated which of three representations (Bar ,
Radial , and Text70%) has the lowest time threshold using three
complications and time represented in a digital format.

4.1 Study 1 Design Specifics

Here, we describe aspects unique to Study 1 compared to those
reported in Section 3. In addition to Bar and Radial , we
included a Text70% representation as a condition because it is com-
monly used to display information on watch faces [31]. In our survey,
we found 63 of the proportion representations that also showed the
proportion as text and an additional 52 items on the watch face that
only showed the proportion as text. The stimuli used for this study
are described in Section 3.4 and can be seen on the left of Fig. 1. We
pre-registered Study 1 (https://osf.io/xygj9): we decided not
to pre-register all three studies individually because we planned to
have the same setup and analysis for all three studies.

4.2 Participants and Results

Table 2 summarizes background information about the participants
we recruited for Study 1. Most (27) participants had human-
computer interaction (13) and visualization (14) backgrounds, and
three participants had a general computer science background. All
participants had normal or corrected-to-normal vision and only one
reported to be colorblind. Participants were not compensated, due
to country regulations where the study was conducted, other than
with a chocolate bar. Wrist-worn devices participants reported to
own were made by Fitbit, Samsung, and Pebble.

The average completion time for the whole study, including read-
ing the consent form, and filling in questionnaires, was 34 minutes.
The time to finish all three conditions was on average 22 minutes.
Thresholds. The mean time thresholds for our representations were
Bar = 318 ms [281 ms, 373 ms], Radial = 397 ms [337 ms,
473 ms], and Text70% = 503 ms [457 ms, 572 ms] (Table 4 Left;
smaller values are better).

For the pair-wise differences of thresholds, we saw evidence
of differences between all conditions. There is evidence that
Radial was slower than Bar by 79 ms [17 ms, 160 ms], that
in turn Text70% was slower than Radial by 106 ms [22 ms,
187 ms], and strong evidence that Text70% was slower than Bar
by 185 ms [131 ms, 268 ms] (Table 4 Right). According to the ob-
tained thresholds, the techniques rank: Bar < Radial <
Text70%.
Accuracy. Following previous work [23], our study design aimed
for ~69% correct responses (error of 31%). Mean error rates were
lowest for Bar = 24% [23%, 25%], then Radial = 26%
[25%, 28%], and Text70% = 31% [30%, 32%] (Table 5 Left).

Table 3: Ranking (RK) of the representations in Study 1 (left) &
2 (right): based on aesthetics (1st row), efficiency (2nd row), and
confidence (3rd row). Ranking of the angles based on readability (4th
row) for Study 3.

RANKING OF CHART AESTHETICS

DIGITAL WATCH FACE DIGITAL+ANALOG FACE

RK Bar Radial Text70% Bar Radial

1 4 26 0 1 29
2* 20 3 8 29 1
3* 6 1 22

RANKING OF CHART EFFICIENCY

1 15 7 8 18 12
2 12 11 7 12 18
3 3 12 15

CONFIDENCE RANKING PER CHART

1 16 7 7 17 13
2 10 13 7 13 17
3 4 10 16

*one participant ranked Bar and Text as equal

WATCH FACE ANGLE: RANKING OF ANGLE READABILITY

RK 50◦ 22◦ 0◦

1 10 3 1
2 2 11 1
3 2 0 12

We have some evidence that based on the pair-wise error rate
differences Radial was less accurate than Bar by 2% [1%,
4%], and strong evidence that Text70% was less accurate than both
Radial by 4% [3%, 6%] and Bar by 7% [5%, 9%] (Ta-
ble 5 Right). The ranking based on the errors is consistent with the
threshold ranking: Bar < Radial < Text70%.
Ranking. Table 3 shows participants’ subjective ranking for the
three representations in terms of aesthetics, efficiency, and con-
fidence in performing the task. Radial was considered the
most aesthetically pleasing, followed by Bar and Text70%
(Table 3 First row, Left). The rankings of perceived efficiency (Ta-
ble 3 Second row, Left) and confidence (Table 3 Third row, Left)
are consistent with those of the threshold and error measures, with
Bar ranked first, followed by Radial , and Text70%.

5 STUDY 2: ADDING AN ANALOG TIME REPRESENTATION

Our survey showed that 28.3% of the watch faces used an analog
time representation and 23.4% used both digital and analog (Sec-
tion 3.2). In Study 2, we wanted to investigate if and how the
addition of an analog time display affects reading time and error.

https://osf.io/xygj9


Table 4: Threshold analysis for all three studies. Left Row 1 and 2: Average thresholds in milliseconds for each representation. Right Row 1 and
2: Pair-wise comparisons for each representation. Left Row 3–5: Difference between independent means of the Bar and Radial thresholds across
all angles. Right Row 3–5: Difference between independent means of the Bar and Radial thresholds for individual angles. Error bars represent
95% Bootstrap confidence intervals (CIs). In red are the CIs adjusted for three/two pairwise comparisons with Bonferroni correction.

Individual thresholds Pair-wise comparison

Study 1: Digital Watch Face — Thresholds

Study 2: Analog Time Representation — Thresholds

Study 3: Watch Face Angle — Thresholds

5.1 Study 2 Design Specifics
We added an analog time representation to the digital display from
Study 1. We dropped the text condition from Study 1 because it was
the lowest ranked with the highest threshold and error rate.

We designed the analog watch face by placing ticks for each
minute around the watch face with every 5 minutes as a thicker
tick mark and a number for the hours next to it (Fig. 1 Middle). We
placed the handles for the hour and minute so they would not overlap
with the visualizations, ensuring that participants could read them.
Therefore, we only used 12, 13, 22, and 23 as hours and minutes
between 51 and 9. We refrained from using hours in the morning to
avoid unrealistic data values such as 9,000 steps at 10 am.

The handles of an analog watch frequently cover a complication
partially. We wanted to test this additional possible distraction from
the task for added ecological validity. Therefore, we decided to
place the handle for the seconds so that it would cover one of the
complications. We used each of the values between 10 and 19, 25
and 34, as well as 40 and 49 to position the second handle.

5.2 Participants and Results
Table 2 summarizes participant detail in Study 2. Participants’ back-
grounds were: computer science (12) (of these 2 from visualization),
computational linguistics (6), engineering (8), and other (4). All
participants had normal or corrected-to-normal vision and only one
participant reported to be colorblind. Participants received 10 e due
to the study taking place in a country, which allowed compensation

or a chocolate bar if they were employees of the university where
we conducted the study. Wrist-worn devices participants reported to
own were made by Apple, Sony, and Miband. The average time for
finishing both conditions was 23 minutes.

Thresholds. The time thresholds for the two representations were
Bar = 330 ms [290 ms, 393 ms] and Radial = 452 ms
[382 ms, 540 ms] (Table 4 Left). For pair-wise differences of thresh-
olds, there is evidence that Radial was slower than Bar by
123 ms [74 ms, 193 ms] (Table 4 Right).

Compared to Study 1, the mean thresholds increased only slightly
for both Bar (+12 ms) and Radial (+55 ms), indicating that
the analog time representation did not slow down participants.

Accuracy. The mean error for the two representations were
Bar = 25% [24%, 26%] and Radial = 27% [26%, 28%]
(Table 5 Left). For pair-wise differences there is some evidence
that Bar had a lower error than Radial by 2% [1%, 4%]
(Table 5 Right). In comparison to Study 1, the error increased only
slightly for Bar (+1%) and remained the same for Radial ,
indicating that the analog time representation did not affect error.

Ranking. Table 3 shows the average rankings for the different condi-
tions in terms of aesthetics, efficiency, and confidence in performing
the task. Overall, Radial was seen as more aesthetically pleasing
(Table 3 First row, Right). However, for efficiency and confidence,
the Bar was ranked higher (Table 3 Second & Third row, Right),
results that are consistent with performance measures and Study 1.



Table 5: Error analysis of data from all three studies. Left Row 1 and 2: Average error rate for each representation. Right Row 1 and 2: Pair-wise
comparisons for each representation. Left Row 3–5: Difference between independent means of the Bar and Radial mean errors across all angles.
Right Row 3–5: Difference between independent means of the Bar and Radial mean errors for individual angles. Error bars represent 95%
Bootstrap confidence intervals (CIs). In red are the CIs adjusted for three/two pairwise comparisons with Bonferroni correction.

Individual error rates Pair-wise comparison

Study 1: Digital Watch Face — Error Rates

Study 2: Analog Time Representation — Error Rates

Study 3: Watch Face Angle — Error Rates

6 STUDY 3: WATCH FACE ANGLE

Blascheck et al. [10, 11] investigated the average angles at which
people held their watch when reading information. They reported an
average angle of a worn watch of 50◦ (SD = 14◦) with the captured
angles spanning a range of 36◦–64◦. Given the wide angle difference,
we wanted to investigate what effect the viewing angle would have
on the thresholds and accuracy of proportion judgments in a less-
controlled scenario with increased external validity.

6.1 Study 3 Design Specifics
Our goal was to find a minimum time threshold for three different
viewing angles. Unlike Studies 1 and 2, we set up a between-subject
experiment and used a chin rest to ensure that all participants had
the same viewing angle. We used 36◦ (1 SD from the average angle)
for training. We included the 50◦ viewing angle that we used in
Studies 1 and 2 to compare trends from the two previous studies.
We chose 0◦ as an extreme case, in which the smartwatch is oriented
parallel to the table. We also included the 22◦ angle, which is 2 SD
from the average angle and roughly in the middle between 0◦ and
50◦. Fig. 2 Right shows all four angles.

We used the time and stimulus design as in Study 2 (Section 5.1)
but had to adjust the complication design. At an angle of 0◦, the
smartwatch screen exhibited a considerable loss in brightness and
contrast ratio that required us to change the color of the visualizations
to a bright magenta, remove the background of the complications,
and desaturate the complication border (Fig. 1 Right).

6.2 Participants

Table 2 shows details about the participants. Due to the Covid-19
pandemic, we had to stop the study after 14 participants to ensure
the safety and health of participants and experimenter. Even though
14 participants are less than the 36 we initially planned, our results
highlight potential trends from this smaller sample. There is no
magic number for participants required in a study [4] and visualiza-
tion studies often have small numbers of participants with relevant
results [8, 13]. When it comes to statistical evidence, CIs with just
two participants can still provide evidence of differences [20].

Participants’ backgrounds were: visualization (4), human-
computer interaction (2), general computer science (2), engineer-
ing (2), social worker (2), and other (2). All had normal or corrected-
to-normal vision without a vision deficit. Participants received 10 e
or a chocolate bar (if employed by the university where we con-
ducted the study), as per the local regulations. Wrist-worn devices
participants reported to own were made by Garmin and Apple.

6.3 Results

To compare angles within each visualization, we used bootstrap CI
calculations (adjusted for multiple comparisons). To compare the
Bar and Radial stimuli conditions (between-subjects) we
used bootstrap CI calculations for two independent samples.

The completion time for finishing all four conditions (including
the training condition) was on average 29 minutes.



Thresholds. First, we investigate the effect of angle for each rep-
resentation: for Bar the threshold means were smallest for
50◦ = 359 ms [223 ms, 566 ms] followed by 0◦ = 363 ms [241 ms,
535 ms], and then 22◦ = 433 ms [257 ms, 802 ms] (Table 4 Left).
From the CIs of our sample and the pair-wise comparisons of the
viewing angles, we did not find evidence of true differences between
these means (Table 4 Right). Given our sample size, we cannot
exclude that trends could emerge with more participants; however,
considering our results so far, we do not suspect large effects. The
detailed CI values can be found in Table 4.

For Radial , some trends emerge. Mean threshold times were
smallest for 50◦ = 376 ms [292 ms, 493 ms], then 22◦ = 420 ms
[266 ms, 634 ms], and finally 0◦ = 576 ms [389 ms, 824 ms] (Ta-
ble 4 Left). Pair-wise mean comparisons provide evidence that
the viewing angle 50◦, and possibly 22◦, are likely faster than the
extreme viewing angle 0◦ (Table 4 Right).

These early results indicate that the thresholds for Bar seem
not to be greatly affected by viewing angles. Radial , however,
is affected by extreme viewing angles (0◦ in our case), but we were
unable to find differences across other angles. If other differences
exist for the remaining angles, they will likely be very small. This
indicates that results from studies that use fixed angles, such as our
Studies 1 & 2, as well as those from previous work on smartwatch
glanceability [10], probably hold for a wider range of viewing angles.

The between-subject difference of the independent means of
Bar and Radial across all angles was -72 ms [-267 ms,
181 ms], and we do not have evidence of a difference between
the two representations (Table 4 Left). For the individual angles,
there was also no evidence of a difference between Bar and
Radial (Table 4 Right). However, for 0◦ there may be a trend
that Bar has a slightly lower threshold than Radial (-213 ms
[-556 ms, 74 ms]), in other words: Bar may be more robust to
extreme viewing angles.
Accuracy. Considering accuracy for Bar , mean error rates
were fairly similar for all angles, with 50◦ = 25% [22%, 27%] and
22◦ = 25% [23%, 28%] having the lowest error rates, followed
by 0◦ = 26% [23%, 28%] (Table 5 Left). We do not have strong
evidence of differences across angles (Table 5 Right).

Considering accuracy for Radial , mean error rates were low-
est for 50◦ = 25% [21%, 29%] and 22◦ = 25% [21%, 28%],
and with 0◦ = 28% [26%, 30%] being the most error prone (Ta-
ble 5 Left). Looking at pair-wise comparisons, there may be a trend
that the extreme viewing angle 0◦ is more error prone than 22◦ and
50◦ (Table 5 Right).

Overall, mean error rate differences were small across the board
(between 1-3%). For Radial , our primary results indicate that
the extreme viewing angle 0◦ may be more error prone than all others.
Consistent with the threshold results, there is neither evidence of a
difference in error rate between the two visualizations overall (Ta-
ble 5 Left), nor when considering individual angles (Table 5 Right).
Ranking. Participants also ranked the three angles from best (1) to
worst (3) based on their ability to read them (Table 3 Fourth row).
50◦ was ranked first the most (10 votes), 22◦ was ranked second the
most (11), and 0◦ was ranked third the most (12).

7 DISCUSSION

In this section, we reflect on our research questions, results, and their
design implications. We end with listing limitations of our studies
and possibilities for future work.

7.1 Summary & Design Implications (DIs)
(RQ1) What are common watch face representations to repre-
sent proportions? Our pre-study showed that two main rules of
construction were used for smartwatch proportion representations:
rectilinear and circular. Bar charts were the most common rectilinear
and arcs, gauges, donuts, and pies for circular construction. While

arcs were most common they showed a huge variety of designs and
sizes, and were often used against the rim of a round watch face,
while radial bars were more standardized in design. Some of the
representations took the form of unit-based visualizations, broken
into smaller chunks, but the majority were continuous representa-
tions. When multiple types of data were shown on a watch face most
commonly the same representation type was used, for example, bar
charts to represent steps and calories.
→ DI 1: Our survey showed what was common on watch faces but
also pointed out avenues of future research, which we discuss in
the next section. Whether or not a designer wants to follow what is
common is a personal choice that involves considering how used
people are to seeing certain representations or their combinations
on the same watch face—in contrast to possible novelty effects or
more engaging designs that have not yet been frequently used.

(RQ2) Which part-to-whole proportion representation has the
lowest time threshold and highest accuracy for multiple smart-
watch complications? In Study 1, we found strong evidence that
visual representations outperformed Text70% proportion represen-
tations. Bar and Radial representations were faster with
less error and ranked higher by participants for aesthetics, efficiency
and confidence. This reflects previous work showing that visualiza-
tion can outperform text to display proportions (e.g., Spence and
Lewandowsky [48]). The data we gathered also highlights differ-
ences between Bar and Radial representations, albeit both
the evidence and the effects are weaker: Bar performed slightly
better than Radial in both time and accuracy of reading. Previ-
ous studies on smartwatches [10] found a slight advantage for donut
charts in data comparison tasks, so our results are different, although
in that previous work, the differences were also marginal. The rank-
ing data reflects this marginal difference too: Bar was perceived
as more efficient and giving more confidence to participants; how-
ever, Radial was preferred for being more aesthetically pleasing.
Other visualization work that did not focus on smartwatches found
pie and donut charts to perform similarly [38]. Should this work
generalize to smartwatches, our work suggests that bar charts will
perform equally or better than pie charts (not just donuts) for part-
to-whole tasks, consistent with results from previous work (see Sec-
tion 2.1). Our results are also similar to Blascheck et al.’s study [10]
which showed that the studied task could be completed with bar and
donut charts on average in <300 ms. Our results here had average
thresholds of ~300 ms for both Bar and Radial .
→ DI 2: We recommend not using pure text representations for
multiple proportion estimations. However, for other types of tasks
and data (e. g., real-time heart rate), future studies are needed.

→ DI 3: The performance of Bar and Radial charts was
quite similar, with a slight advantage for Bar (~80 ms) at the
cost of a decrease in perceived aesthetics. Given how small these
differences were, designers can choose between a slightly more
efficient chart and a more visually pleasing one.

(RQ3) How does the density and complexity of a watch face af-
fect task performance? Adding a display of time in an analog
format increases the visual complexity of a watch face. A first step
to increase the external validity of our work was to see if our results
would hold if we were to add an analog time display. Our data
suggests that the general trend of Bar slightly outperforming
Radial also held on a watch face with an analog display of time.
The trends observed in the first study also held for self-reported
ranking: participants were more confident with Bar and felt
more efficient, while Radial was rated most aesthetically pleas-
ing. Putting the results of both studies side by side, the performance
(accuracy and time) might practically only slightly deteriorate when
an analog time display is added. The average differences we ob-
served were small (<55 ms). The impact of other types of visual
clutter (animation, more complications, color variation, or text) still



needs to be studied because they might have different effects on task
performance (see the literature on visual clutter [22, 44]).
→ DI 4: Analog displays of time are present on roughly one third of
smartwatch faces [31] (https://osf.io/nwy2r/) and as such a signifi-
cant number of people see watch faces with added visual complexity.
Our results suggest that adding an analog time display had only
a negligible effect on reading multiple proportion representations.
In situations in which a small viewing time difference (<55 ms in
our study) matters for the detection of goal completion progress,
designers could automatically switch from an analog to a digital
time display to simplify the watch face.
(RQ4) How does the viewing angle of a smartwatch affect task
performance? In practice, the viewing angle of a smartwatch is
unlikely to be fixed. It seems that for Bar viewing angles do
not have an effect on performance. For Radial , our results
suggest slightly worse performances for 0◦ (parallel to the floor).
With both representations, angles of 22° and 50° obtained relatively
comparable results. In Studies 1 and 2, we chose an angle of 50◦
based on previous studies [10, 11]. Our preliminary results for
Study 3 suggest that our results with 50° would hold with other
viewing angles, including the range between 22° and 50°.
→ DI5: Our findings indicate that only extreme viewing angles
affect performance in Radial , while multiple Bar represen-
tations seem robust to viewing angle changes. Designers can assume
that these visualizations can be read under different viewing angle
conditions; however, if high accuracy is required they should choose
Bar . We also note that the findings of past studies using fixed
angles likely hold for larger angle ranges.
Summary: Our studies found that text representations on smart-
watch faces are less glanceable and accurate in comparison to
Bar or Radial charts. However, which type of represen-
tation to choose can remain up to the wearer or designer, because
performance differences are small. The complexity of the smart-
watch face using both an analog and digital time display only has
a small impact on performance. We also saw that only the extreme
angle affected acted the readability of the watch face.

7.2 Limitations and Future Work
Our results should be considered as a lower bound estimate of the
performances of a general population in a realistic usage scenario.
This is a common yet inevitable limitation of controlled experiments.
A realistic usage scenario for a smartwatch would entail a variety
of viewing angles, a moving watch, different lighting and view-
ing conditions, and varying cognitive load on the wearer. All of
these factors might affect performance negatively. We address this
limitation by providing first results on viewing angles that show
that prior results would probably hold for different viewing angles.
While assessing in more detail how our results hold across more
angles and distances requires further experimentation; our current
study indicates that fixed and non-extreme angles do not seem to
affect performances. We expect that the higher cognitive load in
more demanding contexts in the real world (walking, talking, or
running) will more seriously affect performance [9, 15, 52]. Testing
such effects requires experimental protocols that reliably control the
cognitive load of participants to emulate everyday situations. This
remains a challenging, but exciting future research direction that can
bring together researchers from visualization and cognitive sciences.

As is often the case with in-person visualization studies that
need access to a specific setup, we relied mostly on students and
employees from our university, who often have a high education
background and may be more aware of novel devices than an average
person in the population. Nevertheless, their qualifications (younger,
higher education, tech-savvy) allow us to posit that our samples
would perform better than a representative sample of the global
population. Consequently, we should treat the values that we have
found as a lower estimate of the true population mean. In other

words, with a more diverse sample (e. g. older adults), the exact
values would be higher but the trends observed will likely remain,
making our results and design recommendations still valid, as none
of them are based on actual values but rather on the effects observed.

On a related note, a third limitation lies in the relatively small
sample size of our last study, due to its early termination. We have
mitigated this limitation by acknowledging in our results that our
evidence is weaker due to this smaller sample size, and adapting
our language to reflect the greater uncertainty insisting our results
are preliminary. Nevertheless, we note that our results showing
differences across visualizations in this third study remain valuable,
because there is no ideal sample size for a study [3, 4], statistical
CI tests can show trends with very few participants [20], and that
relatively small sample sizes such as ours are common in many
visualization and human-computer interaction studies [8, 13, 33].

Other real-use factors provide starting points for future research.
These include the number, nature, and placement of the different
visualizations and complications. In a recent smartwatch survey [31],
most wearers reported having 2–5 data items on their display. Our
choice of three complications falls within this common-use range,
nevertheless future work should consider some of the extreme num-
bers and their effect on glanceability. Similarly, the survey revealed
that watch faces sometimes do combine several different visual en-
codings together. Our studies only considered complications with
the same encoding, and mixing encodings can affect performance.
Studying how combining visualizations with different encodings
may affect glanceability remains an open question for smartwatches,
but also for other visualization displays. Finally, in particular arcs
and gauges revealed that complications vary in both size and place-
ment (as can also be seen in the survey teaser of Islam et al. [31]).
This diversity of forms, sizes, and placements opens a large number
of potential variations to study in the future.
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