PacificVis'2023.

Studies of Part-to-Whole Glanceable Visualizations on Smartwatch Faces

Tanja Blascheck, Lonni Besançon, Anastasia Bezerianos, Bongshin Lee, Alaul Islam, Tingying He, Petra Isenberg

Smartwatches

Watch face

Watch Face

- Time
- Complications

Complications: Represent Non-time/date Data

Complications: Represent Non-time/date Data

Representations

- Short texts
- Icons
- Simple visualizations
- Combinations

Usage Contexts: "On the Go" Quick Glances

Monitoring Progress towards Self-set Goals

E.g., How much of my step count goal have I achieved today?

People always have multiple goals

Proportion: Current Value / Goal

- Percentage 70\%
- Visualization

Can people check progress towards different goals at a glance when there are multiple proportions on a watch face?

Reading Multiple Proportions at Once

Can this be done at a glance?

- How does the representation type matter?
- How does the complexity of the watch face matter?
- How does the viewing angle matter?

Pre-Study: Common Proportion Representations

How does time display on the top watch faces?

What are common ways for representing proportions?

153 unique watch faces with at least one proportion

Proportion Representations Design Space

	rectilinear			circular						
	－	＝	\square 0 E － 3 Un	C	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & \dot{c} \\ & \dot{u} \\ & \dot{b} \end{aligned}$	苟 0	$\begin{aligned} & \text { 首 } \\ & \dot{0} \\ & \dot{b} \\ & : \end{aligned}$	$\frac{0}{2}$	$\begin{aligned} & \text { 荡 } \\ & \text { 笽 } \end{aligned}$	\％
calories					1					
distance					1					1
heart rate				1	2		1		5	1
steps	6	3		8	3	2	4	2	10	5
humidity						3				
phone bat．		1		3	2		1		3	1
watch bat．	10	7	13	11	5	2	8	2	26	4
Sum	16	11	13	23	14	7	14	4	44	12

Watch Face Design

Visualization Representations to Compare

A common circular construction

21 times

Visualization Representations to Compare

Bar Chart
Radial Bar
Chart

Number of Complications

Location of the Complications

Final Design

Study Design

Data for Stimuli

- 3 complications (proportions)
- Among them, 1,2 , or 3 complications show a proportion above 66\%

Task

20:16

How many complications represent a proportion larger than 66\%?

4,085
steps
3

Task

How many complications represent a proportion larger than 66\%?

3

Stimulus Exposure Duration: Staircase Procedure

Stimulus Exposure Duration: Staircase Procedure

Stimulus Exposure Duration: Staircase Procedure

Each correct response

Stimulus Exposure Duration: Staircase Procedure

First mistake
$+100 \mathrm{~ms}$

Stimulus Exposure Duration: Staircase Procedure

Stimulus Exposure Duration: Staircase Procedure

Stimulus Exposure Duration: Staircase Procedure

Procedure for One Condition

10 Training trials
Condition
Termination criteria

Starting time for each
staircase: 1000 ms

One of the two:

- 25 reversals, or
- 180 trials

Procedure for One Trial

$1.5 \sim 2$ seconds

Apparatus

Attached a smartwatch to a self-designed adjustable stand, at an angle of 50° [Blascheck et al., 2018; Blascheck et al., 2019]

- Smartwatch at a height of 110 cm from the floor
- Viewing distance of 28 cm from the seated participant

Measure

- Time threshold
- Error rate
- Participants' rankings of techniques

Data Analysis and Interpretation

- Mean with 95% confidence interval (CI)
- Pairwise comparison of different technologies with $95 \% \mathrm{Cl}$ and Bonferroni correction

3 Perceptual Studies

Started from a simplest watch face

Study 1: Digital Watch Face

- 3 representations70\%
- 30 participants

Study 1: Results Speed \& Accuracy

503ms , 31\% error

397ms , 26\% error

318ms, 24\% error

Study 1: Results

503ms , 31\% error

09:51

397ms , 26\% error

Best

318ms, 24\% error

Study 1: Results

503ms, 31\% error

Study 1: Results
 Ranking

Most confident
Most efficient

Study 1: Results
 Ranking

Most visually pleasing

16:48

A more complex watchface?

Analog representation is common on real watch faces

Study 2: Adding an Analog Time Representation

- 2 representations
- removed the text 70\%: poor performance and lowest ranking
- 30 participants

Study 2: Results

Speed \& Accuracy

452ms, 25\% error +55ms

330ms, 27\% error

 +12ms
Study 2: Results

Speed \& Accuracy

452ms, 25\% error +55ms

Faster

330ms, 27\% error $+12 \mathrm{~ms}$

Study 2: Results

Speed \& Accuracy

Fewer errors

(Difference is very small)

452ms, 25\% error +55ms

330ms, 27\% error

 +12ms
Study 2: Does an analog watch face distract?

452ms, 25\% error

Not really

330ms, 27\% error

Study 2: Results Ranking

Most confident
Most efficient

Study 2: Results
 Ranking

Most visually pleasing

16:48

Not everyone views their watch from the same angle...

Study 3: Impact of Viewing Angle

- 2 representations
- 14 participants

Study 3: Representations

Between-subject design: Bar and Radial

Study 3: Viewing Angles

- 50° : average viewing angle of a worn watch
 [Blascheck et al., 2018; Blascheck et al., 2019]
- $\mathbf{0}^{\circ}$: an extreme case
- 22° : Roughly in the middle between 0° and $50^{\circ} ; 2$ SD from the average angle
- $36^{\circ}: 1$ SD from the average angle - used for training

Design Modification due to 0° Issue

- Bright magenta
- Remove the background of the complication
- Desaturated the complication border

Study 3: Results - Bar

Speed \& Accuracy

No evidence of a difference for different viewing angles.

$$
\begin{aligned}
& 0^{\circ}-363 \mathrm{~ms}, 26 \% \\
& 22^{\circ}-433 \mathrm{~ms}, 25 \% \\
& 50^{\circ}-359 \mathrm{~ms}, 25 \%
\end{aligned}
$$

Study 3: Results - Radial 0

Speed \& Accuracy

Slower \& more error at 0°, but differences are practically small

$$
\begin{aligned}
& 0^{\circ}-576 \mathrm{~ms}, 28 \% \\
& 22^{\circ}-420 \mathrm{~ms}, 25 \% \\
& 50^{\circ}-376 \mathrm{~ms}, 25 \%
\end{aligned}
$$

Study 3 Results: Ranking of Readability

RK	50°	22°	0°
1	10	3	1
2	2	11	1
3	2	0	12

What did we learn about reading multiple proportions at once?

- Multiple proportions can be quickly assessed (<500ms)
- Bar charts and Radial bar charts perform better than Text
- The analog watch display only has a small impact on performance
- The viewing angle matters only slightly

Conclusion: That's good news!

Thank You

Tanja Blascheck, Lonni Besançon, Anastasia Bezerianos, Bongshin Lee, Alaul Islam, Tingying He, Petra Isenberg

