

Studies of Part-to-Whole Glanceable Visualizations on Smartwatch Faces

Tanja Blascheck, Lonni Besançon, Anastasia Bezerianos, Bongshin Lee, Alaul Islam, Tingying He, Petra Isenberg

Smartwatches

Watch face

Watch Face

- Time
- Complications

Complications: Represent Non-time/date Data

Complications: Represent Non-time/date Data

Representations

- Short texts
- Icons
- Simple visualizations
- Combinations

Usage Contexts: "On the Go" Quick Glances

Monitoring Progress towards Self-set Goals

E.g., How much of my step count goal have I achieved today?

People always have multiple goals

Proportion: Current Value / Goal

Percentage 70%

Visualization

Can people check progress towards different goals at a glance when there are **multiple proportions** on a watch face?

Reading Multiple Proportions at Once

Can this be done at a glance?

- How does the representation type matter?
- How does the complexity of the watch face matter?
- How does the viewing angle matter?

Pre-Study: Common Proportion Representations

Review 400 top watch faces (184 unique)

How does time display on the top watch faces?

What are common ways for representing proportions?

153 unique watch faces with at least one proportion

Proportion Representations Design Space

	rec	tiline	ear	circular						
	bar	disc. bar	bar w/i icon 🗀	arc 🦰	disc. arc	donut 💍	disc. donut 👶	pie 🍑	gauge //	sliding
calories					1					1
distance					1				_	1
heart rate				1	2		1		5	1
steps	6	3		8	3	2	4	2	10	5
humidity						3				
phone bat.		1		3	2		1		3	1
watch bat.	10	7	13	11	5	2	8	2	26	4
Sum	16	11	13	23	14	7	14	4	44	12

Watch Face Design

Visualization Representations to Compare

A common rectilinear construction

40 times

A common circular construction

21 times

Visualization Representations to Compare

Number of Complications

Location of the Complications

Final Design

Study Design

Data for Stimuli

- 3 complications (proportions)
- Among them, 1, 2, or 3 complications show
 a proportion above 66%

Task

How many complications represent a proportion larger than 66%?

1 2

Task

How many complications represent a proportion larger than 66%?

Procedure for One Condition

Termination criteria

Starting time for each staircase: 1000 ms

One of the two:

25 reversals, or

180 trials

Procedure for One Trial

Apparatus

Attached a smartwatch to a self-designed adjustable stand, at an angle of 50° [Blascheck et al., 2018; Blascheck et al., 2019]

- Smartwatch at a height of 110 cm from the floor
- Viewing distance of 28 cm from the seated participant

Measure

- Time threshold
- Error rate
- Participants' rankings of techniques

Data Analysis and Interpretation

- Mean with 95% confidence interval (CI)
- Pairwise comparison of different technologies with 95% CI and Bonferroni correction

3 Perceptual Studies

Started from a simplest watch face

Study 1: Digital Watch Face

- 3 representations
- 30 participants

Study 1: Results Speed & Accuracy

503ms , 31% error

397ms, 26% error

Study 1: Results Speed & Accuracy

503ms , 31% error

397ms, 26% error

Study 1: Results Speed & Accuracy

503ms , 31% error

397ms, 26% error

Difference is very small

Study 1: Results Ranking

Most confident Most efficient

Study 1: Results Ranking

Most visually pleasing

A more complex watchface?

Analog representation is common on real watch faces

Study 2: Adding an Analog Time Representation

- 2 representations

- o removed the text **70%**: poor performance and lowest ranking
- 30 participants

Study 2: Results

Speed & Accuracy

452ms, 25% error

Study 2: Results

Speed & Accuracy

452ms, 25% error

Faster

Study 2: Results

Speed & Accuracy

Fewer errors

(Difference is very small)

452ms, 25% error

Study 2: Does an analog watch face distract?

452ms, 25% error

Not really

Study 2: Results Ranking

Most confident Most efficient

Study 2: Results Ranking

Most visually pleasing

Not everyone views their watch from the same angle...

Study 3: Impact of Viewing Angle

- 2 representations

• 14 participants

Study 3: Representations

Between-subject design: Bar = and Radial

Study 3: Viewing Angles

- 50°: average viewing angle of a worn watch [Blascheck et al., 2018; Blascheck et al., 2019]
- o°: an extreme case
- 22°: Roughly in the middle between o° and 50°; 2 SD from the average angle
- **36°:** 1 SD from the average angle used for training

Design Modification due to o° Issue

- Bright magenta
- Remove the background of the complication
- Desaturated the complication border

Study 3: Results - Bar

Speed & Accuracy

No evidence of a difference for different viewing angles.

- **o**° 363ms, 26%
- **22°** 433ms, 25%
- **50°** 359ms, 25%

Study 3: Results - Radial O Speed & Accuracy

Slower & more error at o°, but differences are practically small

- o° 576ms, 28%
- 22° 420ms, 25%
- **50°** 376ms, 25%

Study 3 Results: Ranking of Readability

RK	50°	22°	0°
1	10	3	1
2	2	11	1
3	2	0	12

What did we learn about reading multiple proportions at once?

- Multiple proportions can be quickly assessed (<500ms)
 - Bar charts and Radial bar charts perform better than Text
- The analog watch display only has a small impact on performance
- The **viewing angle** matters only slightly

Conclusion: That's good news!

Thank You

Tanja Blascheck, Lonni Besançon, Anastasia Bezerianos, Bongshin Lee, Alaul Islam, Tingying He, Petra Isenberg

